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Abstract. Arma1 is a Byzantine Fault Tolerant (BFT) consensus system designed to achieve linear scalability
across all hardware resources: network bandwidth, CPU, and disk I/O. As opposed to preceding BFT protocols,
Arma separates the dissemination and validation of client transactions from the consensus process, restricting
the latter to totally ordering only metadata of batches of transactions. This separation enables each party
to distribute compute and storage resources for transaction validation, dissemination and disk I/O among
multiple machines, resulting in linear scalability. Additionally, Arma ensures censorship resistance by imposing
a maximum time limit for the inclusion of client transactions. We build a prototype implementation of Arma and
evaluate its performance experimentally. Our results show that Arma totally orders over 100,000 transactions
per second when deployed in a WAN setting and integrated into Hyperledger Fabric.

1 Introduction

Reaching consensus in the presence of Byzantine failures is a problem introduced by Lamport et al. [1] and has
since been long investigated by the scientific community. Byzantine Fault Tolerant (BFT) consensus has gained more
attention with the advent of Distributed Ledger Technologies and the extended use of the latter for financial asset
exchange applications, i.e., scenarios that desire the transparency and high degree of resilience that BFT consensus
offers. However, initial works of BFT protocols suffered from poor performance, especially with a high number of
participants. In recent years, substantial efforts in both academic and industrial research have demonstrated that
BFT systems are capable of achieving significant throughput at large scale.
A prevalent characteristic among consensus protocols is their monolithic architecture, where each participating party
consolidates all the subroutines of the protocol within a single node. Consequently, every party operates a node that
encompasses all aspects of the protocol. Several reasons can account for this approach. Firstly, implementing and
analyzing a distributed consensus protocol involving multiple parties is inherently challenging, and having each party
manage multiple nodes further exacerbates the complexity. Secondly, many researchers gauge protocol efficiency
based on the overall number of messages sent during the protocol or by each party, often overlooking the significant
discrepancy in message sizes and their transmission efficiency. Indeed, the network bandwidth a protocol requires
from each node is often the limiting factor for the throughput and not the number of messages sent. Moreover, most
consensus protocols are evolutions of earlier protocols and can be traced back to seminal works such as PBFT [2]
or Paxos [3], which possess a monolithic structure.
While the monolithic architecture is relatively straightforward to implement and analyze, it inherently constraints
the performance of the system. Eventually, the machine of each party will reach its limit in terms of CPU and
storage operations per second. Only recently, researchers have proposed a consensus protocol [4] that allows each
party to distribute its execution across multiple machines, where not all nodes are created equal. This design
enables the horizontal scaling of all resources required for consensus, including CPU, storage I/O rate, and network
bandwidth. In such systems, each party operates several nodes, and the various subroutines of the consensus
protocol are executed on nodes based on their specific roles. However, current implementations of such systems do
not implement censorship resistance, and don’t prevent transaction de-duplication.

1 Means “Chariot” in Greek. Similarly to a chariot that can tow more when horses are added, Arma totally orders more user
transactions the more hardware it is added.



The contribution of this work This paper introduces Arma, a novel consensus protocol that builds on ideas from
the recent work of Danezis, Lefteris, Sonnino and Spiegelman [4] to achieve linear scalability. Distinguishing itself
from the previous work, Arma incorporates censorship resistance and transaction de-duplication mechanisms. Once
a client submits a transaction to Arma, it can be assured of its finalization. As a result, Arma not only demonstrates
high throughput but also enhances the user experience, by eliminating the need for client applications to include
logic for tracking transaction finalization. This advancement opens up possibilities for constructing payment systems
where correct clients can effortlessly initiate transactions without the necessity of monitoring their success in real-
time.

Brief overview of the Arma protocol In the Arma consensus protocol, transaction dissemination and validation
are entrusted to separate groups of nodes known as shards. Each shard includes a representative from every party
and exclusively manages a specific subset of the transaction hash space.
The nodes within these shards provide attestations concerning persisted batches of transactions or votes related to
node misbehavior. These attestations and votes are then submitted into a Byzantine Fault Tolerant (BFT) consensus
protocol. By totally ordering these attestations and votes, Arma nodes gain collective knowledge regarding which
batches of transactions have been safely persisted by a sufficient number of nodes and identifies nodes displaying
faulty behavior, such as deliberate transaction censorship or being unreachable. With the attestations and votes
fully ordered through the BFT consensus protocol, an ordering between batches in different shards is achieved,
subsequently leading to an implicit total order between all transactions.

Paper Outline.The subsequent section of this paper delves into the evolution of Byzantine Fault Tolerant (BFT)
consensus protocols. Section 3 provides a comprehensive overview of the design of the Arma protocol, highlighting
its key components and mechanisms. Following that, in section 4, it is explained how a prototype which integrates
Arma into the Hyperledger Fabric [5] ordering service was made, and discusses its performance evaluation. In section
5 we give a formal analysis of Arma’s properties, and in Section 6 we conclude and discuss future work.

2 Related work

This section discusses prior work, which is relevant not only to comprehend the current state of the art in high-
performance Byzantine Fault Tolerant (BFT) systems but also to understand the design decisions underpinning the
Arma system.

2.1 Practical Byzantine Fault Tolerance

In contrast to permissionless blockchains like Bitcoin and Ethereum, systems designed for retail and enterprise use
cases often possess a well-defined membership structure and impose stringent throughput requirements. Among
the various Byzantine Fault Tolerant (BFT) protocols, the PBFT [2] protocol stands out as a prominent choice
for such settings, serving as the foundation upon which subsequent works build. A key characteristic shared by
these protocols is the establishment of a total order by having a designated leader node broadcast a batch of client
transactions. However, this inherent asymmetry among the nodes limits the protocol’s throughput, as it becomes
constrained by the network bandwidth of the leader node.

2.2 Multi Instance BFT

In their pursuit of a Byzantine Fault Tolerant system that aligns with enterprise use cases, researchers have con-
sistently sought to identify bottlenecks in existing protocols and propose methods to mitigate them. A notable
example of significant performance enhancement can be found in the techniques employed by Mir-BFT [6].



(a) Each party (a,b,c,d) runs a
single machine with co-located

BFT instances

(b) Each party (a,b,c,d) runs several machines,
each executing a dedicated protocol instance

Fig. 1: (a) Multi instance BFT vs (b) Distributed Multi Instance BFT

Mir-BFT achieves this by running multiple parallel instances of PBFT [2], where each batch sequence i is specifically
reserved for the PBFT instance i% k, with k being the number of parallel PBFT instances. This approach effectively
induces a total order while addressing the identified bottlenecks, resulting in notable performance improvements.

Transaction de-duplication via hashing In Mir-BFT, every client transaction is assigned to a specific PBFT
instance by hashing it to a value within the range of {1, ..., k}. By running multiple PBFT instances, Mir-BFT
effectively distributes the network load that would typically be concentrated on a single leader across multiple
leaders. This distribution helps alleviate the network bandwidth bottleneck associated with having a single leader.
Furthermore, the deterministic hashing of transactions to PBFT instances ensures that duplicate transactions are
prevented. This feature is crucial not only for preventing denial-of-service attacks but also for avoiding unnecessary
duplication of total orderings for the same transaction.

Susceptibility to node crashes Running BFT instances in parallel can indeed increase throughput, but it also
introduces a higher vulnerability to node crashes. Let’s consider a protocol like Mir-BFT, where there are k = n

2
parallel instances of BFT, with n being the total number of nodes. In this scenario, batch bi is assembled and
broadcast by the leader of instance i% k , and similarly, batch bi+1 is broadcast by the leader of instance (i+1)% k.
However, if the leader of node i crashes before broadcasting batch bi, batch bi+1 cannot be delivered until a new
leader is established in instance i% k.
As a result, in such a protocol with k parallel PBFT instances, the throughput drops to zero when any of the
leaders among the k different instances crashes. In comparison, in a standard PBFT protocol, the throughput drops



to zero only when the leader node crashes. The increased susceptibility to crashes in Mir-BFT’s approach can have
a significant impact on the system’s uptime availability.

Throughput limitation causes In addition to transmitting batches over the network, nodes participating in
the consensus process perform other essential tasks. These tasks include writing the batches to disk for crash
fault tolerance, parsing the client transactions within the batches, and verifying their integrity. The speed at which
batches are written to disk is influenced by the underlying storage system of the node. On the other hand, transaction
verification is a computationally intensive task that relies on the CPU’s processing power. Both disk writing and
transaction verification play crucial roles in the overall performance of the consensus process. Consequently, a
protocol that is efficient in load balancing network bandwidth across all parties may have its limiting factor shift
towards CPU and disk I/O.

2.3 Distributed Multi Instance BFT

Running PBFT in parallel enhances horizontal scalability for the network aspect, but it also introduces certain
limitations. In this setup, each node participates in multiple PBFT protocols, resulting in the need to verify all
transactions and write all batches to its underlying storage. Consequently, the scalability of Mir-BFT is primarily
limited to the vertical scaling of CPU and storage I/O. Simply adding more machines to the system cannot effectively
address potential CPU or storage I/O bottlenecks that may arise.
The works of Danezis, Lefteris, Sonnino and Spiegelman called “Narwhal and Tusk”[4], however, offer insights into
spreading the load of storage I/O and CPU across multiple machines within the same party, thereby overcoming these
limitations. The key concept is to distribute the tasks of transaction dissemination and validation across multiple
machines and subsequently establish a total order for the corresponding metadata. By effectively separating these
responsibilities and achieving a distributed consensus on the metadata, the aforementioned work [4] enables the
scalability of storage I/O and CPU by leveraging the collective resources of multiple machines within a party.
Figure 1 shows the architectural difference to the previous architecture, the Multi instance BFT.

Totally ordering batch availability The actual dissemination of transactions is not conducted through a full
consensus protocol but rather through a sub-protocol known as reliable broadcast. In [4], once a batch is persisted
by 2F+1 nodes (where F represents the maximum number of Byzantine faults the system can tolerate), a certificate
of availability is formed. This certificate includes 2F +1 signatures on the metadata of the batch. The certificate of
availability is then subjected to a real consensus protocol to establish a total order. The total order of transactions
is derived from the order of the metadata of the batches.
Similar to a multi-instance Byzantine Fault Tolerant (BFT) system, there can be multiple instances of the sub-
protocol responsible for transaction dissemination. Each instance can execute on its own machine, and instances
operated by the same party are not colocated on the same machine. This distributed execution allows for scalability
and better resource utilization across multiple machines, contributing to the overall efficiency and performance of
the consensus protocol.

Crash fault resilience Unlike a multi-instance BFT approach, a distributed multi-instance BFT design is less
vulnerable to the crash of a party. In the event of a node responsible for broadcasting batches experiencing a crash,
other instances can still completely order certificates of availability. This resilience is attributed to the fact that the
order among instances transmitting transactions is determined by the consensus protocol itself, rather than relying
on a predetermined sequence allocation as seen in multi-instance BFT systems like Mir-BFT.



One significant contribution of [4] is the integration of a fully asynchronous consensus protocol that operates without
a designated leader. This leaderless consensus protocol ensures that transactions can still be finalized, regardless
of which node in the system experiences a crash. This feature enhances the fault tolerance and availability of the
system, as it allows for continuous progress even in the presence of node failures.

Lack of censorship resistance and de-duplication The approach of [4] does not inherently possess censorship
resistance or transaction de-duplication mechanisms. A malicious node responsible for broadcasting batches can
selectively ignore transactions or intentionally slow down its execution, potentially leading to delays. In such cases,
the system relies on clients to resubmit their transactions if they are not finalized within a designated timeout
period. Furthermore, malicious clients can submit their transactions to multiple instances, resulting in wasteful
resource utilization and potential duplication of finalized transactions.
In contrast, the Arma system, which will be detailed in the next section, builds upon the fundamental idea of [4]
and thus benefits from its inherent performance advantages, but also incorporates mechanisms to achieve censor-
ship resistance and transaction de-duplication. By following the Arma protocol, clients can be certain that their
transactions will always be ordered, eliminating the need for timeout-based resubmission.

3 Architectural overview

Figure 2 depicts the Arma protocol, that is broken down into four phases. In the first phase, transactions are validated
against some pre-defined, static system rules (e.g., this phase may include checks on the transaction format, and
client signatures); after the validation phase completes, transactions are dispatched to nodes responsible for the
Batching phase, called batchers. For scalability purposes, the transaction space is sharded, and there is a dedicated
set of batchers for each shard. During batching, transactions are bundled into batches and persisted on disk.
The batchers then create batch attestation shares which are signatures over batch digests, and submit the batch
attestation shares to the consensus phase. The consensus phase totally orders the batch attestation shares and
create signed block headers, which are subsequently delivered to assemblers, who would construct the full block
based on the block headers received from the consensus phase, and the actual corresponding transactions retrieved
from batchers. The latter phase is called Block Assembly, and completes the Arma protocol.

Fig. 2: The four stages of the Arma consensus protocol

In the next section we define key terms that will be used throughout the rest of this paper, while in the subsequent
sections we proceed with the detailed overview of Arma protocol phases and considerations within.
Afterwards, we deep dive into each of the four stages and explain various considerations in the design. Finally we
discuss operational aspects such as onboarding new parties into an Arma system.



3.1 Terminology and Definitions

We will be using the following terms in the Arma protocol:

Nodes: Nodes can be either physical or virtual machines deployed to fulfil a dedicated role, or processes that share
their physical machine with other nodes but operate independently of other nodes.

Parties: Parties refer to the Arma consensus participants. Each node in the system is associated to a single party,
that deploys and maintains the node. We denote the total number of parties in the system as N .

Byzantine node/party: A node or party that is not necessarily abiding by the protocol, but exhibits an arbitrary
behavior. Byzantine [1] nodes can not only crash; a byzantine party may force their nodes to divert from the specified
protocol. Byzantine nodes/parties typically represent nodes or parties that have been compromised. In what follows
we assume there is at most F out of N corrupted parties and that F < N

3 .

Quorum: A quorum is defined by the smallest subset of distinct parties which is guaranteed to intersect with
another quorum in at least one correct party. For instance, if N = 3F + 1, a quorum is exactly 2F + 1 parties, as
(2F + 1) · 2−N = F + 1 which contain at least one correct party as up to F are malicious. A quorum is always at
most N − F but can be less in case F is smaller than N

3 .

Shards: In Arma, a shard represents a logical partition of the transaction space, dividing it into sets of similar
sizes. For instance, one possible approach is to assign the least significant bit of a transaction to Shard 1 if it is
zero, and to Shard 2 if it is one. Sharding transactions allows parallelization of transaction processing.

Batch: A set of transactions of a specific shard bundled together to be sent over the network or persisted on disk.

Batch Attestation Share: A message signed by a party attesting that a specific batch of a specific shard has
been persisted on disk by that party.

3.2 Node roles

In the Arma system, each party operates one or multiple nodes of different types: Router, Batcher, Consensus, and
Assembler. In particular, a party’s infrastructure would typically include one or more routers, multiple batchers
(each node designated for a different shard), a single consensus node, and at least one assembler. Figure 3 shows the
components of a single party in Arma with three shards. As mentioned before, the Router nodes check transaction
validity and forward the received and validated transactions to the Batchers designated for each transaction’s shard.
Batchers group received transactions into batches and submit batch attestation shares to Consensus nodes after
persisting the transactions locally. Assemblers receive an ordered list of signed batch headers from the Consensus
nodes, and retrieve the corresponding batches from Batchers.
As mentioned before, an Arma node can be deployed in its own machine, or can be co-located with several other
nodes in the same machine. More specifically:



Fig. 3: Information flow among components run by each party. Each party runs several (R)outer nodes, (B)atcher
nodes (each node designated for a different shard), a single (C)onsenter node and at least one (A)ssembler node.
The (B)atcher nodes send batches to the (A)ssembler node and votes on persisted batches to the (C)onsenter
node, and the (A)ssembler node receives from the latter signatures over digests of batches voted by the (B)atcher
nodes and outputs blocks which are batches with signatures over their digests.

1. Router: Clients submit transactions to routers of multiple parties. Routers operate in a stateless manner, and
each of them forwards transactions received from clients to the batchers of the same party as the router in
accordance to their designated shards. If required, the router node also verifies that transactions it receives are
well formed and properly signed by authorized clients.

2. Batcher: A batcher receives forwarded transactions from the router(s) and store them in its memory pool. At
this point, the transaction is considered as submitted to the party that operates the batcher by the corresponding
client. A batcher can be either a primary batcher or a secondary batcher :
– A primary batcher persists submitted transactions to disk and bundles them into a batch. It subsequently

forwards the formed batches to the secondary batchers. For each shard there is exactly one primary batcher.
– A secondary batcher pulls batches from the primary batcher and persists them to disk. For each shard,

there exactly one batcher from each party, except from the party that runs the primary batcher.
Upon persistence of a transaction by a primary, the transaction is removed from its memory pool. Similarly,
once a transaction enters a secondary batcher node, it remains in its in-memory pool until it receives a batch
containing this transaction from the primary. Eventually batchers would submit batch attestation shares to
consensus nodes to be totally ordered.

3. Consensus: The consensus nodes collectively agree on the total order of transactions by inducing an ordering
among the batches of various shards. They do it by running a Byzantine Fault Tolerant (BFT) consensus
protocol which eventually assigns each batch (from each shard) a unique sequence number across all shards.
The consensus nodes output a series of batch headers, each signed by a quorum of consensus nodes.

4. Assembler: An Assembler compiles the total order of transactions submitted to Arma, by combining the output
of consensus nodes, i.e., the total order of batch headers, with batches it retrieves from the corresponding batchers
to form blocks. The assemblers persist the blocks on disk and can be seen as archivists of the system, as they
contain both information of the consensus nodes and of the batcher nodes.

Now that the stages of the Arma consensus protocol are explained, and the various roles of the nodes are defined,
we take a deep dive into each of the four stages of consensus.



3.3 Routing and validation

In Arma, a client sends her transaction to all parties. Specifically, the transaction is dispatched to the routers of
each party.
A router node is the simplest component among the four, operating in a stateless manner with two roles:

– Mapping transactions to shards and forwarding them to the corresponding batcher nodes of one’s party.
– Performing validity checks on the transaction and dropping it if it is found invalid.

As such, a router can be a stateless component and multiple instances of it can be added as needed, making
transaction validation and routing horizontally scalable.

Mapping transactions to shards To ensure censorship resistance and de-duplication, it is essential that trans-
actions are mapped to shards in a deterministic manner. In this way, assuming a client follows the protocol, and
submits the transaction to all parties, all honest parties’ routers would forward the received transactions to the
appropriate batchers, ensuring that all honest batchers of the shard will receive the transaction. Additionally, for
effective load balancing across the shards, the router must distribute the transactions among the known k shards
in a manner that is as close to a uniform distribution across the set {1, .., k} as possible.
While a cryptographic hash function could serve as a suitable choice, it is worth noting that the router does not
require the collision resistance and one-way properties. Instead, more efficient alternatives like a CRC checksum can
be employed without compromising its functionality.

Transaction verification Besides forwarding transactions to their corresponding shards, routers also ensure only
transactions that are well formed and properly signed by clients are forwarded. In earlier protocols such as [6], each
party ran a single node which was involved in verifying all transactions arriving from clients to that party. In Arma,
however, a party can utilize the routers to horizontally scale the CPU intensive task of verifying signatures and
alleviating the batcher nodes. Identifying ineligible transactions and excluding them from the next steps, ensure
that system resources are properly devoted to the processing of correctly formed transactions.

3.4 Transaction Batching

In the transaction batching phase transactions are delivered to batchers and bundled together into batches, in a
way that ensures that (i) transaction batches persist safely into stable storage for redundancy and later retrieval,
and (ii) headers of transaction batches are submitted to the consensus phase. Recall that batchers are grouped into
shards. Each party runs a single batcher for every shard in the system, that can act either as a primary batcher, or
as a secondary one. Each shard has a single designated primary batcher node, and the rest are secondaries.

Transaction dissemination As mentioned before, a transaction is submitted by a client to all the parties in
the system (i.e., their router node). Routers subsequently deliver the transaction to their party’s batcher for the
corresponding shard. It is only then, when the client deems this transaction submission as successful to that party.
We assume that a correct client considers a transaction submission as successful when it has been successfully
submitted to N − F parties. We further consider each unreachable party as a faulty one. An more relaxed failure
model where a party can be unreachable to a correct client but still considered not faulty can be supported by
having the client send to F + 1 parties and have the parties gossip the transactions among each other.
As a transaction arrives from a router node to the primary batcher of the shard the transaction corresponds to, the
primary batcher includes it in a batch and persists the batch to disk. When the transaction arrives from a router



(a) A transaction sent from a client
is sent to all router nodes and is
then dispatched to the batcher

node of each party

(b) In each shard, the primary
batcher node broadcasts a batch of

transactions to the secondary
batcher nodes

Fig. 4: A birds eye view of router and batcher nodes of all parties (a) routing a transaction to the appropriate
shard, and (b) broadcasting transaction batches

node to a secondary node of the same shard, the batcher persists puts it into its in-memory pool. The secondary
batcher then pulls batches from the primary and after persisting them to disk, removes transactions that appear in
the received batches from its in-memory pool (if they have already been added there). Conversly, transactions that
have been received from clients shortly after appearing in batches pulled from the primary do not get added to the
memory pool, as they have already been processed.
Figure 4 shows the transaction flow from clients to batchers through the router nodes, and also how batches of
transactions are broadcast among batchers in each shard.
Once a batch is persisted to disk, each batcher be it primary or secondary, creates a Batch Attestation Share by
signing over a message < shard, primary, sequence, digest > where shard and primary are the numerical identifiers
of the shard and party of the primary batcher node of the shard respectively, sequence is how many batches were
previously observed by the primary batcher node, and digest is a hash or a Merkle tree root of the transactions in
the batch, and totally orders the batch attestation share by sending it to all consensus nodes, acting as a client to
the consensus nodes.
It is the responsibility of each batcher of a shard to ensure that the batch attestation share has been sent to all
possible consensus nodes, which is at least a quorum. Figure 5 shows the pseudocode for batcher nodes in both
primary and secondary roles, where sending the batch attestation share to consensus nodes is abstracted by a Total
Order primitive.

Criteria for inclusion of a batch into total order Each shard has a total of N parties, and at least a quorum
of batch attestation shares is collected by having them totally ordered. Once a F + 1 distinct shares for the same
batch attestation share, i.e., triplet < primary, sequence, digest >, are totally ordered, it means that the associated
batch can be retrieved by at least one correct party.



Input:
Private key for signing sk,
ledger L,
Total Order Broadcast TO,
Transaction memory pool M

1 while I am primary do
2 b ←M.Get();
3 σ ← sign(sk, b.Seq || b.Digest || b.Shard || i) ;
4 L ← L || b;
5 TO.Broadcast

(〈
σ, b.Seq, b.Digest, b.Shard, i

〉)
;

6 end

Algorithm 1: Primary batcher i

Input:
Private key for signing sk,
ledger L,
Total Order Broadcast TO,
Stream of batches from the primary B

Input: Total Order Broadcast TO,
Transaction memory pool M

1 while I am not primary do
2 seq ← L.Height();
3 b ← B.RetrieveBatch(seq);
4 if invalidTxInBatch (b) then
5 σ ← sign(sk, t || b.Shard || i);
6 TO.Broadcast

(〈
σ, t, b.Shard, i

〉)
;

7 return
8 end
9 L ← L || b;

10 M.Remove(b.Requests);
11 σ ← sign(sk, b.Seq || b.Digest || b.Shard || i);
12 TO.Broadcast

(〈
σ, b.Seq, b.Digest, b.Shard, i

〉)
;

13 end
Algorithm 2: Secondary batcher i for term t

Fig. 5: Pseudocode for batchers (primary and secondary). Once a batch is appended to the ledger (line 4), it will
eventually be outputted by B.

Efficient transaction bundling Given that a batcher node can function as either a primary or secondary, it is
necessary to prioritize efficiency in transaction bundling.
The challenge lies in swiftly retrieving transactions from the memory pool while maintaining the order of their
arrival and simultaneously allowing uninterrupted insertion of new transactions into the pool.
The Arma memory pool utilizes a mechanism where the retrieval of batches from the memory pool has a time
complexity of O(1). This is achieved by having transaction insertions and batch retrievals not be conflicting with
each other. At any given time, there is a pending batch being filled and a queue of full batches awaiting dispatch.
When a batcher node retrieves a batch from the memory pool, it simply dequeues the oldest full batch from the
queue. If no full batch is present, it retrieves the pending batch that is currently being filled. As transactions enter
the memory pool, they contribute to filling the latest batch, and once the batch reaches a certain size, it is atomically
enqueued into the queue of full batches while an empty batch takes its place. Figure 6 depicts how transactions
enter the memory pool (left side) and fill batches until they are full to form a queue. The next batch to be proposed
is the oldest batch created which is on the right side.

Tracking transactions by secondary batcher nodes The primary batcher’s role is to quickly bundle a set of
transactions, enabling the secondary batchers to retrieve them efficiently. On the other hand, the secondary batchers
are responsible for tracking the transactions in their memory and promptly detecting if any transactions are not
being dispatched within the expected timeframe.



Fig. 6: Transaction memory pool for primary batchers

Before we delve into the various mechanisms in which Arma ensures transactions that are correctly sent by a client
are eventually totally ordered, we outline how Arma secondary batchers detect that transactions have not been sent
by primary batcher nodes.
Efficient detection of transaction censorship involves recording the entry time of transactions into the secondary
batcher node’s memory pool and identifying instances where transactions remain in the pool for an extended period.
The key concept in achieving efficient censorship detection is that precision is not crucial in the case of actual
censorship. In the Arma memory pool, incoming transactions are inserted into specific buckets. These buckets
are assigned timestamps periodically and are subsequently sealed, preventing further transaction insertions. When
transactions arrive from the primary batcher node, they are removed from the corresponding buckets where they
were initially inserted. A sealed bucket that remains non-empty for an excessively long duration indicates either
the transactions within it did not reach the primary node or that the primary node is censoring the transactions.
Garbage collection occurs for sealed and emptied buckets, while sealed yet non-empty buckets serve as indicators of
potential censorship or transmission issues. Figure 7 depicts how transactions are tracked in a secondary batcher’s
memory pool.

Eventual total ordering of transactions Arma provides the guarantee that if a client submits its transaction
to all parties, it will eventually be included in a block without the need for the client to retry the submission. It
is important to note that in the Byzantine setting in which Arma operates, nodes controlled by malicious parties
have the potential to deviate from the protocol.
For instance, an Arma primary batcher node may encounter a failure or intentionally disregard client transactions.
Similarly, a consensus leader node has the ability to ignore batch attestation shares sent by batcher nodes or
experience a crash. These scenarios highlight the challenges and risks associated with Byzantine behavior, which
Arma aims to address through its consensus protocol and the mechanisms it employs. Despite these challenges,
Arma ensures that, over time, all valid client transactions will be included in a block without requiring the client
to reattempt the submission.



Fig. 7: Transaction memory pool for secondary batchers

Censorship resistance in Byzantine Fault Tolerant protocols A Byzantine Fault Tolerant (BFT) consensus
protocol that ensures censorship resistance ensures that each transaction is eventually included in some finalized
block. A common approach involves non leader (follower) nodes recording the time when a transaction is received.
If a transaction is not included in a block sent by the leader within a specific time period, the follower nodes forward
the transaction to the leader. If the leader still does not include the transaction in subsequent blocks, a view change
protocol is initiated. During a view change, the leader role is rotated, and one of the follower nodes becomes the new
leader. Another technique of ensuring censorship resistance is periodical leader rotation. By periodically switching
the leader role, a transaction censored by a malicious leader node is eventually included in a block once an correct
node becomes the leader.

Censorship resistance in Arma batchers In Arma, a similar technique to the aforementioned censorship
resistance method is employed to ensure that batcher primary nodes do not censor transactions from clients.
However, instead of initiating a view change protocol among the batcher nodes, Arma utilizes a complaint voting
mechanism.
In Arma, if a batcher secondary node receives a transaction from a client and it has not been included in a block
sent by the primary batcher node for a period of time, it sends the transaction to the primary node itself. This
is to ensure that the primary batcher received the transaction. Otherwise, a faulty client may have not sent the
transaction to the primary batcher node and it will be falsely accused of censorship. Only when the transaction is
still not received in a batch from the primary batcher node after sending it directly, the secondary node suspects
the primary node of censorship. The secondary batcher node then sends a complaint vote to all consensus nodes,
expressing its concern against the suspected primary batcher. These complaint votes are totally ordered alongside
the batch attestation shares. Once a threshold of F + 1 complaint votes is gathered against a specific batcher
primary, the batcher nodes collectively designate the next secondary batcher node as the new primary batcher for
the respective shard.



Verifying batches sent from primary batcher nodes As previously mentioned, part of the censorship resistance
mechanism of batchers is having the secondary batcher nodes send transactions that were not included in a batch
sent from the primary batcher. This is done by the secondary batcher sending the transaction to the router node of
the primary batcher’s party. Hence, it is ensured that that secondary batcher nodes cannot send bogus transactions
and compete with authentic ones over space in the in-memory transaction pool.
It is left to prevent malicious primary batcher nodes from sending bogus transactions in their batches sent to the
secondary nodes. While such transactions do not end up in the in-memory transaction pool of the secondary nodes,
as they came from the primary node, it still should be avoided as it needlessly wastes resources and lowers the
effective throughput of the system, as they are sent over the network and written to disk. The overwhelmingly
common approach employed by existing systems is to have the nodes verify the transactions sent from the primary
batcher node. While this approach indeed prevents inclusion of bogus transactions, it is very resource intensive and
does not scale horizontally as the secondary node is a single machine 2 like transactions received by router nodes.
To that end, Arma employs a probabilistic approach: Every secondary batcher node chooses a random subset of
transactions to verify in each batch received from the primary batcher node. More specifically, each correct secondary
batcher node picks R transactions to verify among the M transaction in a batch with K invalid transaction.
If one of these randomly chosen transactions are found to be invalid, the secondary batcher node’s party then issues
a complaint to overthrow the primary node and make a different party be the primary for that shard.

Determining the complaint threshold to rotate the primary batcher node Effectively, the batcher nodes
utilize the BFT consensus protocol executed by the consensus nodes as a bulletin board that tracks, for each shard,
which party runs the primary batcher node for a given term. This approach facilitates agreement on the misbehavior
of faulty primary batcher nodes, and implictly provides auditability on the misbehavior.
The threshold of complaint votes that induces a change in the primary batcher node is F + 1 complaints from
distinct nodes about a specific term. When F + 1 complaint votes are collected, the term is incremented by 1 and
the next batcher defined is then made the primary for the shard. By defining the threshold to be F + 1, we are
assured that a correct party considers the primary batcher node of a shard to be faulty, and that F faulty parties
are not enough to falsely accuse a correct primary batcher node. Moreover, this ensures that if F +1 correct nodes
cannot pull batches from the primary batcher node, then the primary batcher node is replaced in a timely manner.

Primary batcher failover In a Byzantine Fault Tolerant (BFT) consensus protocol, both view changes (changing
the leader node) and regular blocks that are finalized through consensus are totally ordered with respect to each
other. This means that if a block b is broadcasted by the leader of view v and subsequently finalized, and later a
view change protocol occurs, incrementing the view to v + 1, all correct nodes possess knowledge of whether block
b was finalized as part of view v or as part of the view change protocol.
However, in the Arma protocol, the retrieval of batches by secondary batcher nodes from the primary batcher is
independent of the retrieval of updates from the consensus. As a result, the progress of batches operates asyn-
chronously with respect to the rotation of the primary batcher for a shard. This introduces a potential problem
where a transaction might be included in a batch of a primary batcher, persisted across several batchers, and sub-
sequently an update is received from the consensuss designating a different primary batcher. If the corresponding
batch attestation shares are discarded, the transactions associated with that batch could be lost. It is not guaranteed
that sufficient batch attestation shares can be collected for that batch.
To address these scenarios, concrete rules which are discussed next, are required to determine how the rotation of
primary batchers should be interwoven with deciding which batches proposed by previous primary batchers are to
2 Of course, the node may delegate the verification to several machines and then aggregate the results, but this requires to

send the batch and wait for results, which carries a latency overhead



be proposed again by the newly appointed primary batchers. Establishing strict rules for primary batcher rotation
helps to ensure the integrity and consistency of batches and their corresponding attestation shares, minimizing the
risk of transaction loss or inconsistency during the rotation process.
When rotating a primary, the protocol should ensure that transactions are not dropped due to the rotation. The
challenge is that the transaction memory pool in a batcher deletes a transaction once a batch containing it was
received from a primary. Thus, a secondary batcher might become a primary after deleting a transaction that came
in a batch from a primary that is no longer a primary. More formally, consider a batch bp sent from primary p. If p
crashes, a new primary needs to take its place. When a secondary batcher q is to become the primary instead of p,
it may or may not have received bp. We split into cases according to two events: (A) Whether bp was received by q;
and (B) whether bp was received by a quorum of parties.

1. AB: bp was received by a quorum of parties and by q. Since q received bp it will delete its transactions from
its memory pool and then F + 1 batch attestations will be eventually ordered by consensus, since a quorum of
parties received bp.

2. ĀB̄: bp was not received by a quorum of parties and neither was received by q. Then, every transaction in bp is
still in the memory pool of q and will be included only once in a batch made by q. If q is malicious and ignores
the transactions in bp we split into cases according to how many batchers received bp:
(a) If at least F + 1 (but less than a quorum) correct batchers received bp it means F + 1 batch attestation

shares for bp will eventually be totally ordered by the consensuss.
(b) Else, F or less correct batchers received bp. Since an honest client submits its transaction to all parties out

of which up to F are faulty, the transactions of bp reached N − F correct parties. Therefore, at least F + 1
correct batchers have the transactions of bp (since F or less correct batchers received bp). Thus, it follows
from the censorship resistance mechanism that if q will not propose batches containing the transactions of
bp, enough complaints will be gathered to make q no longer be the primary batcher, in which case eventually
a correct batcher will be chosen.

3. ĀB: bp was received by a quorum of parties but not by q. Then, each transaction in bp is still in the memory
pool of q and will be included in a batch made by q. The transactions will therefore may be included twice -
once in a batch made by p and once in a batch made by q.

4. AB̄: bp was not received by a quorum of parties, but was received by q. Since q is the new primary and it has
bp, it then proposes its own batch bq containing only the transactions of bp as depicted in Algorithm 3. As the
batch attestation shares of bq are totally ordered by consensus, either F +1 batch attestation shares of bp or of
bq will be collected. However, q might be malicious and decide to ignore bp, which is covered in case (2) ĀB̄.

Decentralized batch attestation share broadcast As in the work of [4], Arma totally orders messages attesting
that a specific batch of transactions has been safely persisted on some predefined subset of parties. However, Arma
does this in a decentralized and trust-less manner. While in [4], the primary batcher node collects the attestations
from the rest of the nodes, in Arma, each batcher node is responsible of sending its own batch attestation share to
the consensus nodes. While at a first glance this design choice may seem as an inefficient one, as it linearly amplifies
the number of messages totally ordered by consensus, it actually gives the system more robustness.
If the primary batcher node crahes, or is misbehaving, it may not be totally ordering batch attestation shares at all.
In such a case, a heuristic mechanism which monitors the output of the consensus nodes and reports to the batcher
nodes is required. Unfortunately, constructing such a mechanism is difficult because it is not clear why an attestation
hasn’t been totally ordered: It can either be because the primary batcher node is malicious, or it can be because
the consensus leader is being malicious. In order to avoid false positives in the reporting mechanism, the timeout
for the reporting mechanism must be higher than the censorship resistance mechanism for the consensus by a large
enough margin, otherwise the consensus leader can be wrongly suspected. Moreover, relying on the correctness of



Input:
An ordered set of pending batch attestation shares from earlier iterations P = {bas1, bas2, ..., basm}
Total Order Broadcast TO
Ledger L

1 T ← ∅ ;
2 C ← ∅ ;
3 foreach bas ∈ P do
4 k ←< bas.Seq, bas.Shard, bas.Digest

〉
;

5 C[k]← C[k] + 1 ;
6 T [k]← T [k] ∪ bas ;
7 end
8 foreach k ∈ C do
9 if C[k] < F + 1 then

10 T ← T \ T [k] ;
11 end
12 end
13 P ← P \ T ;
14 S ← ∅ ;
15 seq ← 0 ;
16 foreach bas ∈ P do
17 b← L.Retrieve (bas);
18 if b ̸= ⊥ ∧ S[b.Digest] ̸= ⊥ then
19 b.Primary ← i;
20 b.Seq ← seq;
21 L ← L || b;
22 seq ← seq + 1;
23 S[b.Digest]← 1

24 end
25 end
Algorithm 3: Pseudocode for batcher failover, run by the new primary batcher i. Lines 1-13 determine which
batches proposed by previous primary batchers need to be carried over by this batcher. For simplicity, in line 14
we assume this was the first time this batcher is primary for this shard. Lines 15-23 propose these batches again.

the primary batcher to submit attestations created by the secondary batcher to consensus to be totally ordered,
opens the protocol for a denial of service attack: A primary batcher node controlled by the adversary can create
new batches but not totally order the corresponding attestations until it is suspected by the secondary batcher
nodes. The secondary batcher nodes now need to reconcile amongst themselves the batch attestation shares they
have created in the meantime. After reconciliation ends, they ought to send the batch attestation shares by at least
F +1, lest they rely on malicious batcher nodes once more. However, this means that a sudden load is now imposed
on the consensus protocol. This is in contrast to the way Arma works, where batch attestation shares are totally
ordered immediately and by all batcher nodes at a steady rate.

Primary batcher nodes from all shards produce batches of transactions which are then received by secondary batcher
nodes. The batches are produced and disseminated in parallel, and as such, parties cannot tell whether a batch of
shard i precedes or succeeds a batch of shard j. We next show how this problem is solved by totally ordering the
corresponding batch attestation shares by the consensus nodes.



3.5 Inducing total order across batches via BFT consensus

As explained previously, once a batcher node persists a batch, it sends a batch attestation share to all consensus
nodes to be totally ordered by having consensus nodes participate in a Byzantine Fault Tolerant (BFT) consensus
protocol. For simplicity, we say that the BFT protocol advances in rounds, and in each round it totally orders some
batch attestation shares. The rounds do not refer to communication rounds or stages in the consensus protocol, but
rather to proposals sent from the leader that have been finished being ordered by the BFT consensus protocol.

Collecting batch attestation shares Each batcher, whether primary or secondary, sends a batch attestation
share upon successfully persisting a batch on disk. The batch attestation shares are totally ordered by consensus
in some consensus round, and during the consensus protocol, the Arma consensus nodes execute a non-interactive
computation which determiness for which transaction batches enough batch attestation shares have been collected.
Once F + 1 number of batch attestation shares for a specific transaction batch are totally ordered, the consensus
nodes collaborate to assemble a quorum of signatures over a block header corresponding to that batch, as depicted
in Figure 8 . the signed block header which contains a hash pointer to the previous block header, extending the
block header chain. Each block header contains a digest of its corresponding batch, which is either a hash or a
Merkle root of the batch. While it is possible to sign each batch, a more efficient method is to create a block header
with multiple digests, each corresponding to a batch. This amortizes signature verification over several batches,
making it cheaper to verify a block.

Fig. 8: (a) Batch attestation shares totally ordered in a consensus round, for which (b) a corresponding block
header with a quorum of signatures is assembled

Collecting thresholds of batch attestation shares During the process of totally ordering batch attestation
shares, a very likely scenario is one where F + 1 batch attestation shares is totally ordered, but in different BFT
rounds. To handle this situation, Arma maintains a list of pending batch attestation shares within the metadata
section of each BFT round. Once F+1 batch attestation shares corresponding to a batch are collected, the consensus
nodes know they can collaborate to create a block header corresponding to the batch, include it in the hash chain
and sign over it. In Algorithm 4 it is explained how thresholds of F +1 batch attestation shares for the same batch
are grouped together and extracted even though they arrive in different consensus agreement rounds. The batch
attestation shares agreed upon in a round of BFT are input into Algorithm 4 and the output from it is then passed
as input in the next BFT round.
The reason for this approach is to ensure all consensus nodes would process batch attestation shares deterministically
and thus sign over the same block headers comprising the hash chain. However, there is a non trivial challenge in



Input:
An ordered set of pending batch attestation shares from earlier iterations P = {bas1, bas2, ..., basm},
A batch containing batch attestation shares sent from the leader consensus node B = {bas1, bas2, ..., bask}

Output:
An ordered set of pending batch attestation shares for future iterations P ,
An ordered set of sets of distinct F + 1 batch attestation shares T .

1 P ← P ∪B ;
2 T ← ∅ ;
3 C ← ∅ ;
4 foreach bas ∈ P do
5 k ←< bas.Seq, bas.Shard, bas.Digest

〉
;

6 C[k]← C[k] + 1 ;
7 T [k]← T [k] ∪ bas ;
8 end
9 foreach k ∈ C do

10 if C[k] < F + 1 then
11 T ← T \ T [k] ;
12 end
13 end
14 P ← P \ T ;
15 return P, T

Algorithm 4: Pseudocode for processing batch attestation shares

this design: After a F +1 distinct batch attestation shares are accumulated in the pending list, they are purged by
Algorithm 4 , but additional batch attestation shares may then accumulate there in future rounds. This is because
more than F + 1 batcher nodes submit their batch attestation fragments, but there is no guarantee they end up
agreed upon in the same BFT round. For example, in a four node setting with a single faulty node, the threshold
F +1 is two, however three batch attestation shares are created. We denote a batch attestation share that is totally
ordered by consensus in a later round than the round which collected a F+1 batch attestation shares as an orphaned
batch attestation share. Clearly, an orphaned batch attestation share will never be purged from the pending list
by Algorithm 4. Therefore as the system processes new transactions, the pending list will contain more and more
orphaned batch attestation shares.
Another problem is that too many batch attestations accumulated may lead to creation of two block headers with
the same batch digest: For example, in a system of four nodes, two thresholds of F + 1 attestation shares may be
collected by two pairs of two batch attestation shares.

Garbage collection and de-duplication of batch attestation shares To limit the pending list from growing
indefinitely and to avoid creation of two block headers corresponding to the same batch, the consensus nodes hold
an in-memory database of digests of batches for which the number of corresponding batch attestations exceeded
the F +1 threshold to create block headers. In other words, every time F +1 batch attestation shares are collected,
the corresponding digest is added to the in-memory database. Then, consensus nodes know for which digests they
should not attempt to create a second block header. There are three problems to address with this design: (1) How
to garbage collect the in-memory database to prevent it from growing indefinitely; (2) How do prevent malicious
nodes from re-submitting old batch attestation shares after they have been garbage collected from the in-memory
database, thus forcing creation of prior block headers in the hash chain; and lastly (3) how to uniformly and



Fig. 9: Purging orphaned batch attestation share of transaction batch with digest 025...3c from the pending list

deterministically purge orphaned batch attestation shares from the pending list, since it is changed via the BFT
consensus.
To that end, Arma divides the time axis into discrete sections of equal length called epochs. Each section of time
is represented by its epoch which is a monotonously ascending number. When creating a batch attestation share,
a batcher computes the current epoch and includes it in the payload of the batch attestation share sent to the
consensus nodes. Consensus nodes prevent totally ordering batch attestation shares with epochs too far in the past,
therefore the second problem of re-submission of old batch attestation shares is avoided. Arma addresses the first
and third problems without relying on an assumption that the time in all correct consensus nodes is synchronized.
Instead, old batch attestation shares are pruned via vote counting: Each batch attestation share of a shard contains
references to orphaned batch attestation shares of the same shard as depicted in Figure 9. Once a batch attestation
share gathers F + 1 votes that point to it, it is pruned from the pending list. A batch attestation share can only
point to a batch attestation share of an earlier sequence number or of an earlier term, so cycles are avoided.
It is important to note that if the network is partitioned for a too long period of time, correct batchers may observe
a batch attestation share in the pending list for which F + 1 batch attestation shares have never been collected
in the past, and as a result, falsely classify it as an orphaned batch attestation share, thus voting to purge it. In
such a scenario, F +1 batch attestation shares may never be collected for the corresponding batch. A trivial way of
addressing this, is having batchers that see their batch attestation shares being purged, re-submit them with new
epochs.

3.6 Block assembly out of transaction batches and block headers produced by consensus

After each round of the Byzantine Fault Tolerant (BFT) consensus in Arma, one or more block headers are per-
sistently stored by the consensus nodes. These block headers include hashes referencing corresponding transaction
batches, and monotonously ascending sequence numbers. The assembler nodes retrieve the block headers from the
consensus nodes, while the transaction batches are retrieved from the batcher nodes. Each block header carries a
quorum of signatures from the consensus nodes, which the assembler nodes verify. This fact guarantees that all
assembler nodes commit the same headers in the same order. For each block header, an assembler node is respon-
sible for retrieving the corresponding batch, connecting them together to form a complete block and subsequently
writing it to the ledger as depicted in Algorithm 15.
By storing the entire block, which encompasses the block header, the associated transactions, and a quorum of
signatures on the block header (which contains a collision-resistant digest of the transactions), in the ledger, the
assembler node is effectively an archivist of the Arma system.
As the shards independently generate batches at a potentially different rate than the corresponding headers are
totally ordered, it is impossible to predict the exact number of batches fetched from a batcher relative to the



Input:
Streams of transaction batches from batcher nodes {B1, ...,Bk}, one for each of the k shards.
A stream of block headers from consensus nodes H.
An index for blobs of data I. Retrieves blocks by their digest I.Retrieve() in case they were indexed earlier by

I.Index()
A ledger of blocks L.

1 do in parallel
2 foreach shard ∈ {1, .., k} do
3 B ← Bshard ;
4 I.Index(B)

5 end
6 for true do
7 h← H;
8 if I.Exists(h.Digest) then
9 B ← I.Retrieve(h.Digest);

10 L.Append(
〈
h,B

〉
);

11 else
12 continue
13 end
14 end
15 end

Algorithm 5: Pseudocode for assembling blocks from batch attestations and transaction batches

corresponding headers within a given time frame. Consequently, it is not feasible to keep the batches in memory
until their corresponding block headers are retrieved. Thus, batches are promptly written to disk once they are
fetched. Similarly, there may be cases where a block header is retrieved, but the corresponding batch is yet to be
retrieved. To address this, the block headers are also written to disk instead of being stored in memory until the
corresponding batches are retrieved. Consequently, blocks are assembled by reading the headers and batches from
the disk rather than fetching them from the network.

3.7 Dynamic reconfiguration and onboarding

The Arma system supports dynamic addition and removal of parties and their corresponding nodes from the system
by reconfiguration transactions that can be submitted into the system. We consider the governance and the access
control of these reconfiguration transactions to be out of scope, as this work focuses on the Arma protocol. Addition
or removal of every node depends on its role:

Node addition Each party can have as many assembler and router nodes as it likes, but only a single consensus
node, as well as a single batcher per shard. A new party is onboarded into Arma in the following manner:

1. Its assembler node fetches the batch history and total order consensus history from assembler nodes of other
parties.

2. Once the assembler node catches up with other parties, the shards are expanded with batcher nodes from the
joining party, all acting as secondary nodes to minimize the impact on the system. Unlike assembler nodes,
batcher nodes need not replicate the entire batch history, therefore their addition is rather quick.



3. Finally, the membership of the consensus set that run the Byzantine Fault Tolerant consensus protocol is
expanded, adding a new consensus node.

If the system is configured to withstand up to F parties being faulty, and the total number of parties is 3F + 3,
then an addition of party implicitly means the system can now withstand up to F + 1 parties being faulty.

Node removal Assembler nodes may be removed freely as long as they are not the last assembler nodes removed
from their own party, otherwise the party loses access to its own source of newly created blocks. If a consensus node
is removed from the set of nodes that run the Byzantine Fault Tolerant consensus, or a batcher node is removed
from a shard, the system can still operate as if the node has crashed. Removal of a router node of a party impacts
all its batchers, and is effectively equivalent to having the entire party unreachable. Removal of a party entirely
involves removal of all of its nodes from the configuration of the system. If the system is configured to withstand up
to F parties being faulty, and has exactly 3F +1 parties taking part in its execution, a removal of a party implicitly
means that the system can now only withstand F − 1 parties being faulty.

Processing a reconfiguration transaction When a client submits a transaction to the router nodes of all
parties, the router nodes forward it to the appropriate batcher node for processing. However, transactions that
involve reconfiguring the system, such as adding or removing nodes, should not be processed in the same manner as
ordinary transactions within the batcher shards. This distinction arises due to a critical factor: If a reconfiguration
transaction is processed within a shard, the consensus nodes will only receive the digest of the transaction and will
not have access to the full details necessary for processing the configuration change that may directly impact them.
To address this issue, when a router node detects a reconfiguration transaction, it redirects the transaction to the
consensus node of its respective party for processing, rather than routing it to the batchers. This ensures that
reconfiguration transactions are appropriately handled and processed by the consensus nodes, allowing them to
access the complete information required for implementing the configuration change.

4 Integration into Hyperledger Fabric and performance evaluation

In this section, we delve into how Arma can be integrated into Hyperledger Fabric. We then evaluate the performance
of a prototype of a Hyperledger Fabric [5] ordering service node embedding Arma components.
As previously mentioned, the Arma system comprises different types of nodes, including router nodes, assembler
nodes, batcher nodes, and consensus nodes. Conversely, in Hyperledger Fabric, there are only two types of nodes:
Peers, responsible for processing transactions, and ordering service nodes, tasked with receiving transactions from
clients and totally ordering them into blocks for retrieval by the peers. Within this structure, it is feasible to embed
many of the Arma components within a Fabric ordering node. While this topology may not fully leverage the
scalability capabilities of Arma, it still enables a substantial increase in the throughput of the ordering service by
an order of magnitude.
By integrating Arma into the Hyperledger Fabric framework and deploying it within the ordering node, the or-
dering service can benefit from the improved efficiency and performance offered by Arma’s consensus protocol.
This integration represents a significant enhancement for the ordering service in Hyperledger Fabric, allowing for a
substantial boost in transaction throughput.
In Hyperledger Fabric, ordering nodes perform two main tasks:

– Verify transactions are well formed and properly signed by authorized clients.
– Totally order the transactions and bundle them into blocks signed by the orderer nodes themselves.



Fig. 10: Arma components blue integrated alongside Fabric components (green) in a Fabric ordering node
process. Transactions from clients are verified by router nodes and are forwarded into the ordering service
node, where the R∗ router dispatches them to the batcher instances of appropriate shards.

We decouple these two tasks by delegating the former task of verifying transactions to Arma router nodes. The rest
of the Arma nodes are embedded in the Hyperledger Fabric ordering service node, as seen in Figure 10 .
As transactions arrive from the router nodes into the ordering node, they are routed to the batcher instance
corresponding to the shard computed by the R∗ router logic. Then, transaction batches are written into the Fabric
ledger as they are received from the primary batcher node. For the consensus node, we re-use Fabric’s native BFT
library [7] as-is, but modify its configuration to to order batch attestation shares instead of Fabric transactions and to
produce batches of signed Fabric block headers. More specifically, in the original Hyperledger Fabric implementation,
the BFT orderer embeds the SmartBFT [7] consensus library. The leader broadcasts an unsigned block and the
nodes sign the block header and piggyback their signatures during the agreement protocol. As a result, a quorum
of Fabric signatures is collected by every node at the end of an agreement on a block. In our prototype, we made
the SmartBFT leader node broadcast a batch of batch attestation shares (and complaints on primary batcher
nodes), and instead of signing over the entire batch, they deterministically assemble Fabric block headers and sign
over them. The resulting block headers are then passed into the assembler component. Afterwards, the transaction
batches are retrieved from the Fabric ledger, and full Fabric blocks are assembled and written to the ledger again,
ready for retrieval by peers.

4.1 Chaining transaction batches in Hyperledger Fabric

In some distributed ledgers it is not possible to associate a block header with more than one batch. For example,
in Hyperledger Fabric each block header contains essential information such as a sequence number, a hash of the
previous header, and a hash of the transactions associated with the block. The transactions are concatenated and
then hashed using a cryptographic hash function. Due to the structure of a block header, which consists of a single
hash, it is not possible to associate a Fabric block header with more than one batch. Hence, When integrated with
Hyperledger Fabric, Arma’s consensus nodes generate a single Fabric block header for each F +1 batch attestation
shares. Within each set of block headers that is totally ordered via the Byzantine Fault Tolerant consensus protocol,
the Fabric block headers are linked together in a hash chain.



4.2 Performance evaluation

We evaluate the performance of an Arma prototype integrated into a Hyperledger Fabric ordering service node. We
have incorporated batchers, assemblers, and consensus nodes directly into the ordering service node process. Addi-
tionally, we have represented a router node as a straightforward function that maps transactions to the appropriate
batcher instance within the Fabric ordering service node process.
It’s important to note that in a real-world production environment, the router component would ideally operate
on a dedicated node and perform transaction verifications as transactions arrive from clients. Our performance
evaluation primarily focuses on measuring the efficiency with which transactions originating from clients are totally
ordered into Fabric blocks, without the involvement of router nodes in the verification process.
It’s worth mentioning that while our evaluation involved embedding all components within a single ordering service
node for simplicity, this may not be the most scalable and performant deployment strategy for Arma. We recognize
the need for future work to assess the performance of a distributed deployment of Arma where each node role runs
in its own machine.
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Fig. 11: Performance evaluations with varying number of nodes (N) and transactions varying in size

Experiment setup The evaluation was carried out using multiple clients situated in England, generating transac-
tions of two different sizes: 300 bytes in one experiment and 3.5 KB, which corresponds to the standard Hyperledger
Fabric transaction size, in another. Each transaction was sent to all ordering service nodes in parallel. Subsequently,
the clients retrieved blocks from these ordering nodes and calculated both throughput and latency.
The ordering service nodes were deployed across three distinct datacenters located in England, Italy, and France.
Latency measurements between these datacenters were as follows: 10ms between England and France, 20ms between
England and Italy, and 17ms between Italy and France.
For the infrastructure, the ordering service nodes were hosted on dedicated bare-metal Ubuntu 22.04 LTS machines.
These machines were equipped with 96 Intel Xeon 8260 2.40GHz processors (comprising 48 cores with 2 threads per
core) and 64GB of RAM. Additionally, they featured a Broadcom 9460-16i RAID 0 configuration with two SSDs.



We conducted experiments with various numbers of Arma ordering service nodes starting from 4 nodes up until
and including 16 nodes.

Result Analysis The results of the evaluation can be seen in Figure 11 . The right and left graphs show evaluation
with transaction sizes of 300 bytes and 3500 bytes respectively.
First, it can be clearly seen that the higher the amount of nodes the lower the throughput. This is expected, as
more data needs to be transmitted among the nodes.
An interesting fact is while in the experiment with the 3.5KB transaction size, the transactions are 11.6 times bigger
than the experiment with the 300B transaction size, the difference in transactions per second totally ordered is only
∼ 6 times higher for the smaller transactions. This may imply an overhead that stems from transaction batching
and censorship resistance mechanisms, since the amount of data totally ordered in the experiment of the large
transactions is twice bigger than the other experiment. However, it could be associated to the fact that parameters
such as batch size and maximum batch latency in both experiments were identical, and calls for further fine tuning
of parameters as a function of the transaction size.

5 Conclusions and future work

At its essence, Arma formulates a technique for amplifying the performance of a consensus protocol by decoupling
data dissemination from the actual consensus mechanism. As demonstrated in the evaluation of the prototype, it
exhibits considerable potential in enhancing the scalability and performance of consensus. Two key insights that stem
from this research are in the ability to enhance the performance of a slow, non-pipelined consensus like SmartBFT
[7] by employing the methodologies explained in Arma, and how to add censorship resistance to an Arma like
system. However, it is important to note that the current iteration of the prototype falls short in certain aspects,
potentially influencing the evaluation outcomes. A prominent issue is that all Arma components run by a party
were integrated within the same Fabric node. Subsequent iterations of this research will evaluate a fully distributed
Arma deployment, which holds promise for further performance enhancements, as pointed out by the findings of
’Narwhal and Tusk’ [4]. Additionally, proper input sanitation would be implemented in order to ascertain whether
it has an effect on the performance.
Lastly, a comparative analysis between a purely distributed Arma deployment and a Fabric-compatible Arma
deployment is needed to quantify the extent to which the Fabric stack influences performance.
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